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Zlectranntc surface states in semiconductors often Use between the valence'
and conduatica bands and give rise to charge densities confined to the surface
region. Laser radiation of frequency less than the energy ga can eot
electrons fraU delocalmed valence band states to these localizedsufc
states leading to large changes in the charge itibto at the surface.
Selective eh mmtof adeoziption/desozption pzocesses involving tic cor
polar aispecies can result from such a charge redist~ibution. gsing a o
dmensional modal for silicon, the cross-section for the laser-induced

electronic transition to surface states is shoam to he large. Theitecto
ese of an adopecies with the surface change significatly with direct

eacitatics of surface states in a ----Acondacter. fTr a "m-ameoa meotal, 4

however, diret tzmsitiins bt- e bulk and surface states are nt alloedm,
but phmma-mWMdid tZOMsIticn GOVple With lase radiation lend to sub-
stantial charge tanser an for sa zsdto.<

Ikuh effort has beea devoted to the study of the effects of lae radiation
on the phoacns in solid surfaces. 30th thoeicl1) and eaeiaa 12J
wods have relied. on the laser to excte thee vbainlmodes of the systan
in order to enhance surface processes.

On the other hae ht-nue surface reactions ma occur through
electronic excitation. Schotron radiation studies C31 on metal surfaces
haves shomn indticed daopin ame to the shift of electronic charge in the
surface region, C4].

For a semoductor, states with charge localimd in the surface region
exist in addition to the bulk conduction and valence bande states (5]. In the
following, we will demonstrate the use of a laser for exciting charge into

4 these surface states and discuss the effect on surface processes.
For a truincated oeimnoalchain of length L and lattice constant at

the solutions of the Sahfdinger equation can be obtained within the nearly-
freeelecaun ~roiumation (51. fte energy for the bulk electronic states in

U 1 32(3.23 ± ~ 2 (-) 2 12  2 1

where k is the wavenumer of the electron, g - 2w/a is the reciprocal latftice
vector and Z is the buad gap erGM . The results for the valence band (nags-
titve branch)Iand conduction band (positive brach) are lustrated in figure I.
the wavefunctions are constructed from siin of plane waves [G]. For
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Laser induced transitions to the surface states will be. governed by the

integral

whom is the vector potential of the laser radiation and is the Minmentiin
operator of the electron. if we use a laser that is polarized parallel to the
chain and emploit the periodicity of the functions contained in our wave-
function [6], we cbtain

*a Mct - -L (tf)V cK@Cjjk>0,(
where I is the intensity of the lser, w is the frequency and the subscript
zero indicates integration over the first unit cell. The sm, S, is given by

3 I ai i(9/2-k) A&a :IA, (9)
1-o

where N is the number of atom in our chain. To obtain the transition proba-
bility, we would take the square modulus of equation (a). if we assm that
N is very large [G], the am squared can be apprzimated by

1.12 k~ha~a(10)a 1 2ica.

where 8 (k-g/2) Is the Dirac delta function. Consequentlyr the trniinfro
the bulk to a surface stte is only pemntted if the real part of the crystal
nmemttin xmim u ndiaged. Ibis xelatioinhilp is not too surprising since it

is an emoct resatiton of lase-indmed transitions beteen bulk bands [71.
]FUrtei for ow nodel, it confines um to the top of the valance band,
where the density of states is a mmdmm (infinite) and the laser frequency
needed for a transition Is a mnixmim.

To first order, the tzamition rate from the valence band to the surface
band is

where wuc - B., 3 k* Using equations (8) and (10) in this exreasion, after
evaluating the svom and tim intgral the transition rate become

T 19-I@L. dsII/~J d (12)
137 * 2  

1 2K& 4
ALI

where ic now refers to the state obeying the resonance condition

- i[3g;-k 2 + (%2.g-q 2 l/ (13)

fte integral over the wavefunctions; and the energy derivative can be readily
evaluated (61. Finally, we obtain the cross section, a, from the relation-
Shipp

0 a (14)



Although the complete expression for a in quite complicated [61, we can asks
nw simple observations.

If the exciting laser radiation is at a frequency near 0.*5 Eg, the energy
derivative will vanish and

a O-. %a0 (15)

Wei is exactly what one would expect since this mid-gap energy is a branch
* Point at which no surface state exists.

If the laser radiation is near a frequency 0 or zg, the cross-section
becomes

At both extreMes K goes to Xero and 0aldverges. This Occurs because at the
surface band edges the charge associated with the surface states becomes more
and -a re delocalized throughout the lattice, until at ic - 0 the charge is
completely delocalised. At this point the surface states became bulk states,
and instead of cross- sections, one should consider absorption coefficients.

Figure 2 depicts the behavior of the cross-section over the gtire
frequenc range. The values for the lattice' cstant, a -2.3., adthe
energy gap, Eg -1.17 eY, are typical of silicon (8].

I02

Figure 2. Absorption cross-section for surface states, av, in A versus the
frequency of the exciting laser radiation.

To illustrate what laser intensity is required for a certain absorption
rate, in consider exciting a9 #Waco state at 0.4 3 . This -- aespnds to
a laser frequency of about 10&a Na whih falls in &~ infrared.' From
figure 2, the cross-section is about TL2 

* if we assam our laser i ntensity
In 1 W/cm2, the transition rate is about 4 z 10-5 photons absorbed per second.
Sine-an electron is excited for each photon absorbed and the effective charge
depth for the surface state is about 8 atomic layers, the transition rate is
about 5 x; W0 eleactrons per surface atom per second. To obtain the number of
transitions per unit surface area, we divide by the surface area of the end
atolm, whereby we obtain 1010 photons absorbed per cm2 per second. This value
is quite large considering the low poser of the laser. Consequently, using
@sut a laser can lead to appreciable charge excitation in the surface region.*



Since the chare depth increases as we Move awa from the mid-gap region,
WO wish to excGte surface states near 0.5 Zg to obtain the greatest effect on
surface charge. From figure 2, we a" that in this region the cross-section is
quite substantial. Consequently, we would epect a laser tuned to a frequency.
-near 0.5 Zg to be an effective controller of surface charge.

ADPECIS-SURIFAZ XMMI'CTXOU

To examine the effect of this surface chare an adepecies, we mst first
deterane the charge profile in the surface region. ror the unexcited system,
the electron density is

no(a)-M IL- i#"(=) 12 (17)

Where the subscript 0 indicatesn gron stat and Kis the Fermi energy with
crystal imntum I,.If the semiconductor is Isiedtalsrwthn
energy less than teenergy gap, an electron will be excited from state k - gV2
to a surface state Andicated by ic. The new density will be the s of the
ground state density and the surface state density less the change
associated with the excited bulk state. nowever, the bulk state is delocalized
throughout the system and its effect on the density will be negligible.
Therefore, the excited system will have a density

n(x) -n 0 (z) + I #,(s)I . (18).

We have evaluated the densities for silicon and the results are depicted in
figure 3. The solid line is the gound state char" densmty. the oscillations
of the charge as am goes into the bulk of the crystal is due to the concen-
tration of charge around the iow. te dashed. lne represents the density for
the system with the excited suface state of K - 0.5 Zg/q in the lower branch.
As can be seen by this plot, the charge in the excited surface state produces
a total electronic charge in the surface region that is twice as great as the
bulk average. If one excites suface states closer to the branch point nea
the gap center, the charge concen-ration in the fizst few layers of the sur-
face will increase up to about thrice the average density.

3.0

a

lgure 3. lectron density distribution at the surface. The solid Line repre-
sents the grod electronic state, and the dashed line represents the system
wth the emited surface state 1 c 0.5 39/g in the lower branch.
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if aCharged adsee i above the surface, this exce:: charge in the
surface region can proucue a nu :ed effect an the adspecies surface iLnt.eracti:on.
This interaction can be written classically as

where vr) is the electron-ion potential of the adspecies at zt. We have
assumed that the charge density is uniform in the z and y directions. if we
take v(r) to be Coulobic with Thowss-'eri screening (9]-. we can readily
evaluate the integrals over x and y to obtain

(z.) f_,dz n (z)e~~ (20)

where A is the Thoas-lemi screening parameters

*2 GwnX M i. (21)

SUsing our density expression, equation (18), we obtain

U(s1 ) - f I.11)I=,Il"ZI. (22)

Sins we are. not concerned with the interaction of adspecies with the smL,-
conductor in the ground state, we only consider the surface contribution to
the potential (suencript s) in equation (22). Zf we now Insert the expres-
sion for the surface wavefunction in equation (22), we will obtain

U(xt)- e XSI A(ic) - e'2qz 2 5(,) (23)

where the coefficients A () and 5(ic) are given elsewhere [101. 2he potential
in equation (23) is exponentially damped as one moves away from the surface.
In the vicinity of the surface the effect on the total potential can be quite

5 .85

S-SL
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Figure 4. fhe agnitulde of the surface interaction potential (in .illiartroes)
at a distance x, - a for the system With various excited surface states. The
solid line represents surface states in the lower energy branch; the dashed
line, the upper energy branch.



substantial. To illintrate this for vari ous surface states, we have plotted
the change in potential at x, - 4 for all surface states in figure 4. The
uper brach states are at a higher energy than the lower branch states.
There&fore, the exponential tail of the charge density and, subsequently, the

inteacton is slightly greater.
our contention that laer can control surface charge density in semi-

conductors and, subsequenatly, enhance surface processes has been confirmed.*
Since metals also play an important role in catalysis, the effect of lasers on
metal surfaces will also be examined via a simple model.

if we mindml a metal as a truncated one-dimensional chaine we will obtain
empcessions for the bulk and surface wavefunctions and their associated
enorgie which are the some in form, as those for the onev-dimansional semi-
conductor. Emiever, whereas the lower band in a semiconductor in completely
filled (sea figure 1), in a metal this band is only partially filled. For
exmle, in the case of soditu (, the top of the lower band lies at 3.8 eV
but the band is only occupied up to 3.1 ev in the ground state.

if we shine a laser on our metal, we cannot directly excite electrons from
the bulk to the surfac. this is due to our selection rule twes equation (10) 1
which says that we an only excite bvUk states with k - 9/2. In a metal, there
are no occupied bulk atI with real inm at or near this crystal momentL
To overcome this problon, the electroas can be excited to the k - g/2 state
with the phonow of thes axystal before excitation into the surface sates by
the laser photoas. fthi pkhow weuald supply doe energy needed for the trani-
tion and phonoas; would sqpjly the needed crystaL momentum. Figure 5
illuastrates the badsin a smta and the suggested pathwer for exciting surface
states.

Sina the first-crear tesition poility will varnish since neither
crystal mmenam nor eerg am conserved, we can write the transition
probability of stain k*. to ki via inftermedat state k' as

- k-,

o g(24)

Figure S. Dispersion relation for a metal and an excitation pathway to the
surfocm statess). 1'%4 vorti-ea arrow represents a photon of frequency wi the
horisantal array, a r amn of .iMntu j. UC is an vper conduction band*



9where the 8%Wer- and subscripts f and prefer tothe laser field and the
Hjk sequivalent to equation (7)

with the time exponential factored out. The phonon matrix element can be
* written [7],

i(T)1 1 2  (KK + a () (25)
p

t
where X is the IMAR Of the lattice atom, a (K) and a (K) are the annihilation
and creation operators of the phonan, r(g) is the fozm .factor, and the crystal

If we inset equations (7) - ld(25) inoequation (24) and average over the

tion rate
K2 2

T fdk. y()2[2n(X)+l1T 26

p 9/%r? p

where 1K g/2-kO. T ((i, /2) is the first-order transition rate beateen bulk
state g/2 and surface state Ic induced by the laser field and is given by
equation (12). We can convert this exprssion into an integral over energy.
If we then assue a thermal distribution of pbonon and electrons, we need only
consider the integral within an interva k3! around the Fei=i energy where TL

is helatic teertue. At roam -- W~5Ie this interval is small and
the integrend can be considered a constants

T %cT IcyX2 M) 2 (2~ + 1 )
T3 O ~ )2(c,g/2) (7

"p (g/2. p

where K - 9/2-k,,.
For sodiiM w Can readily evaluate equation (26):a

T as 2.38z10- 'Pl (c,9/2). (28)

Since the. vatio~m physical constants for sodi~m are -not significanily different
frs those of silicon, we would expect the first-order rates to be roughly

coqerbl. Vra the previous section, we saw that a significant 0haton 2
absorptiOU in silicon could be induced with a low power laser (1 to 10 V/cm)
Therefore, we would expet ta produce a similar effect in sodium with a moderate
power laser (10 to 100 k/cm ). Consequently, as with semiconductors, we would
expect a laser to act as an efficient controller of surface charge in a metal.
Subseent ineatoswould likewise be effected.

CONCLUSION

Using a laser to localize electronic charge in the surface region of a semi-
conductor or a metal can produce an appreciable effect on adspecies-surface
interaction. For a negatively charged adspecies, desorption can be induceds
if positively charged, adsorption is enhanced. In a more realistic model with
both occupied and eqity surface states, the laser could excite holes as well as



electrons and thus selectively enhance adsorption or desorption for the same
charged adapecies.

Of course, this same formalism would apply to a polar adspecies. The posi-
tive end of a molecule would be attracted to a negatively charged surface.
Thus, in addition to enhancing adsorption or desorption, the laser will cause
the adapecies to ine up in a desired orientation.

Furthermore, since the charge distribution of an adspecies is a function of
its electronic state, our laser controlled surface could select the desired

* ;state. Finally, once molecules are adsorbed on the surface, new energy bands
could be introduced through which the laser could enhance surface processes.
To ixprova our understanding of the adspecies-surface system, the dielectric
screening problem would have to be addressed in more detail.

Because the concentration of charge is so large in the surface region, it
is conceivable that a lattice rearrangement could be induced in the surface
area. Such an effect could lover the charge in the surface. On the other hand,
the new surface states would probably be more stable and, subsequently, have a
larger lifetime. To study these effects, a self-consistent-field calculation
would have to be perfomed.

The major limitation of the above model, however, is its one-dimansionality.
The three-dimmnsional interaction potential may be quite couplex depending not
only an the distance from the surface but also on the position of the adspecies
with respect to the plane of the surface. Finally, in a real metal or semi-
conductor, the surface states are not necessarily confined to the gap between
the valence and conduction bands.

Nonetheless, we have clearly demonstrated that lasers can be used to cantrol
surface charge in both totals and siconductors. Such charge, in turn, can
lead to enhanced surface processes. The effects on these processes of
adspecies-surface dynamics and higher dimensions are the subject of continuing
research.
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